Esse blog é de caráter pessoal e destina-se aos alunos e companheiros interessados em Matemática.
Sendo a internet uma vasta rede de informações que se perde em quantidade de conteúdo, o que pretendemos é juntar todas essas informações em um local que meus alunos possam ter acesso de forma mais simples. Logo para construção desse blog o que estamos fazendo é garimpando na rede tudo que consideramos relevante e postando em um único lugar.

terça-feira, 6 de dezembro de 2011

INTEGRAIS TRIPLAS - EXERCÍCIO

INTEGRAIS TRIPLAS EM COORDENADAS CARTESIANAS


Exercício 2


Encontre o volume da região no primeiro octante limitada pelos planos coordenados, pelo plano x+y e pelo cilindro y^2+4*z^2 .
Solução



A região está ilustrada na figura abaixo, em que o cilindro y^2+4*z^2 está em azul e o plano x+y em ocre.
[Maple
Indique por R a região da qual se quer calcular o volume. Da figura percebe-se que a base B de R é a região triangular descrita da seguinte maneira: para cada x fixo no intervalo [0, 4], y varia no intervalo [0, .
Isolando o valor de z da expressão do cilíndro, obtém-se que z . Daí segue-se que R pode ser descrita como: para cada (x, y) fixo na base B, z varia no intervalo[0, . Usando essa descrição, segue-se que o volume V de R é dado pela integral tripla
Calculando essa integral iteradamente, obtém-se que o volume da região é dado por






Nenhum comentário:

Postar um comentário